Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Primary Antibodies   >   Antibody Collections   >   Integrin Antibodies   >   Anti-Integrin β4 (Tyr-1526), Phosphospecific Antibody   

Anti-Integrin β4 (Tyr-1526), Phosphospecific Antibody

     
  •  - Anti-Integrin β4 (Tyr-1526), Phosphospecific Antibody AN1826
    Western blot analysis of A431 cells serum starved overnight (lanes 1, 3, & 5) and treated with pervanadate (1 mM) for 30 min (lanes 2, 4, & 6). The blots were probed with rabbit polyclonal anti-Integrin β4 (Tyr-1526) (lanes 1 & 2) and anti-Integrin β4 (Tyr-1494) (lanes 3 & 4) or with mouse monoclonal anti-Integrin β4 (lanes 5 & 6).
    detail
  •  - Anti-Integrin β4 (Tyr-1526), Phosphospecific Antibody AN1826
    Immunocytochemical labeling of integrin β4 in control (Top) and pervanadate-treated A431 cells (Bottom). The cells were labeled with mouse monoclonal anti-integrin β4 (Cytoplasmic region) (left) or rabbit polyclonals anti-integrin β4 (Tyr-1494) (middle) or anti-integrin β4 (Tyr-1526) (right), then the antibodies were detected using appropriate secondary antibodies conjugated to DyLight® 594.
    detail
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
  • detail
Product Information
Application
  • Applications Legend:
  • WB=Western Blot
  • IHC=Immunohistochemistry
  • IHC-P=Immunohistochemistry (Paraffin-embedded Sections)
  • IHC-F=Immunohistochemistry (Frozen Sections)
  • IF=Immunofluorescence
  • FC=Flow Cytopmetry
  • IC=Immunochemistry
  • ICC=Immunocytochemistry
  • E=ELISA
  • IP=Immunoprecipitation
  • DB=Dot Blot
  • CHIP=Chromatin Immunoprecipitation
  • FA=Fluorescence Assay
  • IEM=Immunoelectronmicroscopy
  • EIA=Enzyme Immunoassay
WB
Primary Accession P16144
Reactivity Bovine
Host Rabbit
Clonality Rabbit Polyclonal
Isotype IgG
Calculated MW 202167 Da
Additional Information
Gene ID 3691
Other Names integrin, CD104, GP150
Target/Specificity The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins. Activation of IκBα occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF-κB. This pathway of IκBα regulation occurs in response to various NF-κB-activating agents, such as TNFα, interleukins, LPS, and irradiation. An alternative pathway for IκBα regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of IκBα and NF-κB-activation. In contrast, Tyr-305 phosphorylation by c-Abl has been implicated in IκBα nuclear translocation and inhibition of NF-κB-activation. Thus, tyrosine phosphorylation of IκBα may be an important regulatory mechanism in NF-κB signaling.
StorageMaintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.
PrecautionsAnti-Integrin β4 (Tyr-1526), Phosphospecific Antibody is for research use only and not for use in diagnostic or therapeutic procedures.
ShippingBlue Ice
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins. Activation of IκBα occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF-κB. This pathway of IκBα regulation occurs in response to various NF-κB-activating agents, such as TNFα, interleukins, LPS, and irradiation. An alternative pathway for IκBα regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of IκBα and NF-κB-activation. In contrast, Tyr-305 phosphorylation by c-Abl has been implicated in IκBα nuclear translocation and inhibition of NF-κB-activation. Thus, tyrosine phosphorylation of IκBα may be an important regulatory mechanism in NF-κB signaling.

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

$ 329.00
Cat# AN1826
Size:
Quantity:
Availability: 7-10 days
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"