PION Antibody (C-term)
Affinity Purified Rabbit Polyclonal Antibody (Pab)
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND

Application
| IHC-P, WB, E |
|---|---|
| Primary Accession | A4D1B5 |
| Other Accession | NP_059135.2 |
| Reactivity | Human |
| Host | Rabbit |
| Clonality | Polyclonal |
| Isotype | Rabbit IgG |
| Calculated MW | 97802 Da |
| Antigen Region | 537-565 aa |
| Gene ID | 54103 |
|---|---|
| Other Names | Gamma-secretase-activating protein, GSAP, Protein pigeon homolog, Gamma-secretase-activating protein 16 kDa C-terminal form, GSAP-16K, GSAP, PION |
| Target/Specificity | This PION antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 537-565 amino acids from the C-terminal region of human PION. |
| Dilution | IHC-P~~1:10~50 WB~~1:1000 E~~Use at an assay dependent concentration. |
| Format | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. |
| Storage | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. |
| Precautions | PION Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures. |
| Name | GSAP |
|---|---|
| Synonyms | PION |
| Function | Regulator of gamma-secretase activity, which specifically activates the production of amyloid-beta protein (amyloid-beta protein 40 and amyloid-beta protein 42), without affecting the cleavage of other gamma-secretase targets such has Notch. The gamma-secretase complex is an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Specifically promotes the gamma- cleavage of APP CTF-alpha (also named APP-CTF) by the gamma-secretase complex to generate amyloid-beta, while it reduces the epsilon-cleavage of APP CTF-alpha, leading to a low production of AICD. |
| Cellular Location | Golgi apparatus, trans-Golgi network |
| Tissue Location | Widely expressed.. |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
Accumulation of neurotoxic amyloid-beta is a major hallmark of Alzheimer disease (AD; MIM 104300). Formation of amyloid-beta is catalyzed by gamma-secretase (see PSEN1; MIM 104311), a protease with numerous substrates. PION, or GSAP, selectively increases amyloid-beta production through a mechanism involving its interaction with both gamma-secretase and its substrate, the amyloid-beta precursor protein (APP; MIM 104760) C-terminal fragment (APP-CTF) (He et al., 2010 [PubMed 20811458]).
References
He, G., et al. Nature 467(7311):95-98(2010)
Oh, J.H., et al. Mamm. Genome 16(12):942-954(2005)
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.





Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.



