CHMP2A Polyclonal Antibody
Purified Rabbit Polyclonal Antibody (Pab)
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND

Application
| WB, IHC-P, IHC-F, IF, ICC, E |
|---|---|
| Primary Accession | O43633 |
| Reactivity | Rat, Dog |
| Host | Rabbit |
| Clonality | Polyclonal |
| Calculated MW | 25 KDa |
| Physical State | Liquid |
| Immunogen | KLH conjugated synthetic peptide derived from human CHMP2A |
| Epitope Specificity | 1-100/222 |
| Isotype | IgG |
| Purity | affinity purified by Protein A |
| Buffer | 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol. |
| SUBCELLULAR LOCATION | Late endosome membrane. Localizes to the midbody of dividing cells. Localized in two distinct rings on either side of the Fleming body. |
| SIMILARITY | Belongs to the SNF7 family. |
| SUBUNIT | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III). ESCRT-III components are thought to multimerize to form a flat lattice on the perimeter membrane of the endosome. Several assembly forms of ESCRT-III may exist that interact and act sequentally. In vitro, heteromerizes with CHMP3 (but not CHMP4) to form helical tubular structures that expose membrane-interacting sites on the outside whereas VPS4B can associate on the inside of the tubule. Interacts with CHMP1B, CHMP2B, CHMP3, CHMP4A, CHMP4B, CHMP4C and CHMP5. Interacts with VPS4A; the interaction is direct. Interacts with VPS4B; the interaction is direct. Interacts with MITD1. Interacts with VTA1; the interaction probably involves the open conformation of CHMP2A. |
| Post-translational modifications | ISGylated in a CHMP5-dependent manner. Isgylation weakens and inhibits its interactions with VPS4A and VTA1 respectively. |
| Important Note | This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| Background Descriptions | CHMP2A belongs to the chromatin-modifying protein/charged multivesicular body protein (CHMP) family. These proteins are components of ESCRT-III (endosomal sorting complex required for transport III), a complex involved in degradation of surface receptor proteins and formation of endocytic multivesicular bodies (MVBs). Some CHMPs have both nuclear and cytoplasmic/vesicular distributions, and one such CHMP, CHMP1A (MIM 164010), is required for both MVB formation and regulation of cell cycle progression (Tsang et al., 2006 [PubMed 16730941]).[supplied by OMIM, Mar 2008] |
| Gene ID | 27243 |
|---|---|
| Other Names | Charged multivesicular body protein 2a, Chromatin-modifying protein 2a, CHMP2a, Putative breast adenocarcinoma marker BC-2, Vacuolar protein sorting-associated protein 2-1, Vps2-1, hVps2-1, CHMP2A, BC2, CHMP2 |
| Dilution | WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500,ICC=1:100-500,IF=1:100-500,ELISA=1:5000-10000 |
| Storage | Store at -20 ℃ for one year. Avoid repeated freeze/thaw cycles. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 ℃. |
| Name | CHMP2A |
|---|---|
| Synonyms | BC2, CHMP2 |
| Function | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. |
| Cellular Location | Late endosome membrane; Peripheral membrane protein; Cytoplasmic side. Nucleus envelope. Note=Localizes to the midbody of dividing cells. Localized in two distinct rings on either side of the Fleming body. Localizes to the reforming nuclear envelope on chromatin disks during late anaphase (PubMed:28242692) |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.





Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.

