WDR4 Antibody
Rabbit mAb
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND

Application
| WB, IHC, FC, ICC |
|---|---|
| Primary Accession | P57081 |
| Clonality | Monoclonal |
| Other Names | TRM82; WD repeat protein 4; wdr4; |
| Isotype | Rabbit IgG |
| Host | Rabbit |
| Calculated MW | 45490 Da |
| Dilution | WB 1:500~1:2000 IHC 1:50~1:200 ICC/IF 1:50~1:200 FC 1:50 |
|---|---|
| Purification | Affinity-chromatography |
| Immunogen | A synthesized peptide derived from human WDR4 |
| Description | Required for the formation of N(7)-methylguanine at position 46 (m7G46) in tRNA. In the complex, it is required to stabilize and induce conformational change of the catalytic subunit. |
| Storage Condition and Buffer | Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw cycle. |
| Name | WDR4 |
|---|---|
| Function | Non-catalytic component of the METTL1-WDR4 methyltransferase complex required for the formation of N(7)-methylguanine in a subset of RNA species, such as tRNAs, mRNAs and microRNAs (miRNAs) (PubMed:12403464, PubMed:31031083, PubMed:31031084, PubMed:36599982, PubMed:36599985, PubMed:37369656). In the METTL1-WDR4 methyltransferase complex, WDR4 acts as a scaffold for tRNA-binding (PubMed:36599982, PubMed:36599985, PubMed:37369656). Required for the formation of N(7)- methylguanine at position 46 (m7G46) in a large subset of tRNAs that contain the 5'-RAGGU-3' motif within the variable loop (PubMed:12403464, PubMed:34352206, PubMed:34352207, PubMed:36599982, PubMed:36599985, PubMed:37369656). M7G46 interacts with C13-G22 in the D-loop to stabilize tRNA tertiary structure and protect tRNAs from decay (PubMed:36599982, PubMed:36599985). Also required for the formation of N(7)-methylguanine at internal sites in a subset of mRNAs (PubMed:31031084, PubMed:37379838). Also required for methylation of a specific subset of miRNAs, such as let-7 (PubMed:31031083). Independently of METTL1, also plays a role in genome stability: localizes at the DNA replication site and regulates endonucleolytic activities of FEN1 (PubMed:26751069). |
| Cellular Location | Nucleus. Chromosome Note=Localizes at the site of nascent DNA synthesis |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.





Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.


