GRIN2B Blocking Peptide (C-Term)
Synthetic peptide
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
Primary Accession | Q13224 |
---|---|
Other Accession | Q01097, Q00960 |
Gene ID | 2904 |
---|---|
Other Names | Glutamate receptor ionotropic, NMDA 2B, GluN2B, Glutamate [NMDA] receptor subunit epsilon-2, N-methyl D-aspartate receptor subtype 2B, NMDAR2B, NR2B, N-methyl-D-aspartate receptor subunit 3, NR3, hNR3, GRIN2B, NMDAR2B |
Target/Specificity | The synthetic peptide sequence is selected from aa 1320-1332 of HUMAN GRIN2B |
Format | Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. |
Storage | Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. |
Precautions | This product is for research use only. Not for use in diagnostic or therapeutic procedures. |
Name | GRIN2B {ECO:0000303|Ref.3, ECO:0000312|HGNC:HGNC:4586} |
---|---|
Function | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). |
Cellular Location | Cell membrane; Multi-pass membrane protein. Postsynaptic cell membrane {ECO:0000250|UniProtKB:Q00960}; Multi-pass membrane protein. Cell projection, dendrite. Late endosome {ECO:0000250|UniProtKB:Q01097}. Lysosome {ECO:0000250|UniProtKB:Q01097}. Cytoplasm, cytoskeleton {ECO:0000250|UniProtKB:Q01097}. Note=Co-localizes with the motor protein KIF17 along microtubules. {ECO:0000250|UniProtKB:Q01097} |
Tissue Location | Primarily found in the fronto-parieto-temporal cortex and hippocampus pyramidal cells, lower expression in the basal ganglia. |

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity).
References
Adams S.L.,et al.Biochim. Biophys. Acta 1260:105-108(1995).
Hess S.D.,et al.J. Pharmacol. Exp. Ther. 278:808-816(1996).
Mandich P.,et al.Submitted (FEB-1997) to the EMBL/GenBank/DDBJ databases.
Mandich P.,et al.Genomics 22:216-218(1994).
Schito A.M.,et al.Neurosci. Lett. 239:49-53(1997).

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.