JMJD2B Antibody (T305)
Affinity Purified Rabbit Polyclonal Antibody (Pab)
- SPECIFICATION
- CITATIONS
- PROTOCOLS
- BACKGROUND
 
| Application  
 | WB, E | 
|---|---|
| Primary Accession | O94953 | 
| Other Accession | Q91VY5 | 
| Reactivity | Human, Mouse | 
| Host | Rabbit | 
| Clonality | Polyclonal | 
| Isotype | Rabbit IgG | 
| Calculated MW | 121897 Da | 
| Antigen Region | 281-306 aa | 
| Gene ID | 23030 | 
|---|---|
| Other Names | Lysine-specific demethylase 4B, 11411-, JmjC domain-containing histone demethylation protein 3B, Jumonji domain-containing protein 2B, KDM4B, JHDM3B, JMJD2B, KIAA0876 | 
| Target/Specificity | This JMJD2B antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 281-306 amino acids from human JMJD2B. | 
| Dilution | WB~~1:1000 E~~Use at an assay dependent concentration. | 
| Format | Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. | 
| Storage | Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. | 
| Precautions | JMJD2B Antibody (T305) is for research use only and not for use in diagnostic or therapeutic procedures. | 
| Name | KDM4B | 
|---|---|
| Synonyms | JHDM3B, JMJD2B, KIAA0876 | 
| Function | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys- 20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate (PubMed:16603238, PubMed:28262558). Plays a critical role in the development of the central nervous system (CNS). | 
| Cellular Location | Nucleus {ECO:0000255|PROSITE-ProRule:PRU00537, ECO:0000269|PubMed:15927959} | 

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.
info@abcepta.com, and receive a free "I Love Antibodies" mug.
Provided below are standard protocols that you may find useful for product applications.
Background
Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate.
References
Beyer, S., et al. J. Biol. Chem. 283(52):36542-36552(2008)
Pollard, P.J., et al. Biochem. J. 416(3):387-394(2008)
Katoh, Y., et al. Int. J. Mol. Med. 20(2):269-273(2007)

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.
If you have any additional inquiries please email technical services at tech@abcepta.com.




 
 
                                 
                                 
                                

 
                                         
                                        
 
                                         
                                         
                                         Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them.
Foundational characteristics of cancer include proliferation, angiogenesis, migration, evasion of apoptosis, and cellular immortality. Find key markers for these cellular processes and antibodies to detect them. The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.
The SUMOplot™ Analysis Program predicts and scores sumoylation sites in your protein. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle. The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer.
The Autophagy Receptor Motif Plotter predicts and scores autophagy receptor binding sites in your protein. Identifying proteins connected to this pathway is critical to understanding the role of autophagy in physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer. 
        




